
Techniques of Water-Resources Investigations 
of the United States Geological Survey 

Chapter A4 

A MODULAR FINITE-ELEMENT MODEL (MODFE) FOR AREAL 
AND AXISYMMETRIC GROUND-WATER FLOW PROBLEMS, 

PART 2: DERIVATION OF FINITE-ELEMENT EQUATIONS AND 
COMPARISONS WITH ANALYTICAL SOLUTIONS 

By Richard L. Cooley 

Book 6 
Chapter A4 b 

http://www.usgs.gov
reidell
Click here to return to USGS Publications

../index.html


conjugate-gradient algorithm can sometimes yield a value of max 
i I 

k+l _ xk xi i I 

that is small even when the solution is inaccurate. Thus, another criterion 

that is also a rough measure of max i Ixi - xii is employed. 

The residual given by equation (270) can be written for any row i as 

ail[xl - x:] + ai2[x2 - x';] + . . . + aiN[xN - x:] = rt 

Thus, because aii is positive, 
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The sum C a.. /aii is 
i=l I I =J 

generally in the range of 1 to 2, so is assumed to 

(286) 

(287) 
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J - 

be unity. Therefore, a rough measure of max 

additional stopping criterion is 

j- lxi - x21 is Irrl/aii, and the 

max r 
i I I t /aii 5 e. (289) 

Note that if MICCG is used to solve the nonlinear equation (234), then 
there will be an inner MICCG iteration loop and an outer loop on the 
nonlinearity. An efficient way of employing MICCG for these problems is to 
set the convergence criterion E to be larger than normal (say, larger than 
es by about an order of magnitude) to reduce the number of inner iterations 

taken at each outer iteration. Good accuracy is achieved by requiring close 
convergence of the outer iteration sequence. 

COMPARISONS OF NUMERICAL RESULTS WITH ANALYTICAL SOLUTIONS 

Results of simulating some simple ground-water flow problems for which 
analytical solutions have been presented in the literature are given here to 
demonstrate the accuracy of the finite-element code (MODFE). Each simula- 
tion is designed to test specific computational features that were discussed 
in preceding sections and to verify that MODFE can accurately represent the 
physical processes. To demonstrate that any consistent system of units may 
be used with MODFE, both English and metric systems of units are used in the 
example problems. 

THEIS SOLUTION OF UNSTEADY RADIAL FLOW TO A PUMPED WELL 

MODFE is used with axisymmetric cylindrical coordinates to compute 
unsteady flow to a well located in a confined nonleaky aquifer having homo- 
geneous and isotropic hydraulic properties and an infinite area1 extent. 
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The pumped well fully penetrates the aquifer thickness (100 feet) and its 
diameter (1 foot) is not significant for the simulation. The analytical 
solution for drawdown is given by the Theis equation (Lohman, 1972, p. 15) as 

s = & W(u), 

where s is drawdown [length], Q is volumetric discharge [length3/time], T is 
transmissivity [length2/time], and W(u) is the well function 

where u = r2Sj4Tt, r is radial distance from the well [length], and S is the 
storage coefficient [O]. 

Because of radial symmetry about the well bore, the problem can be 
simulated as an r - z plane section through the aquifer with the well 
located at the z axis (figure 18). The radial extent of the simulated- 
aquifer region is 8,000 feet, although the analytical solution was developed 
for an aquifer of infinite area1 extent. This distance is beyond the 
influence of the pumped well during the simulation period so that the 
computed solution near the well is not affected by the boundary condition 

at r - 8,000 feet. Radial node spacing was expanded by a factor of n 
starting with r = 125 feet to obtain the finite-element mesh composed of 52 
triangular elements and 42 nodes shown in figure 18. The initial time- 

element size was 3 X 10 -5 
days, and an expansion factor of 1.25 was used to 

generate subsequent elements, to yield a total of 20 time elements. Other 
characteristics of the problem are: 

T = 10s ft2/d, 

S- 0.001, 

Q = 160,000 ft3/d, 

h(r,z,O) = 0 ft, 

h(8,000,z,t) = 0 ft. 

These characteristics and time-element sizes are the same as used by Wilson 
and others (1979, p. 85-88) to test their finite-element code, except that 

Z 

v- 

Well 

DISTANCE ALONG r AXIS, IN FEET (NOT TO SCALE) 

Figure 18. Finite-element mesh used to simulate unsteady-state radial flow 
to a pumped well. 
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Theis solution 

Finite-element solution 

1 o-2 L 

10-l IO0 10’ 1 o2 

DIMENSIONLESS TIME, l/u 

Figure 19. Theis solution (Lohman, 1972, p. 15) and finite-element results 
for unsteady radial flow to a pumped well. 

lengths are designated as feet here rather than meters. Radial node spacing 
is also the same, but Wilson and others solved the problem using Cartesian 
coordinates. 

To simulate confined flow in axisymmetric cylindrical coordinates, 
no-flow boundaries are placed along the aquifer top and bottom. Well 
discharge is simulated as a line sink at the well radius r = 0.5 feet using 
the specified-flow part vB 

c I 
of the Cauchy-type boundary cgndition (equation 

(209)). Because vB is specific discharge (volumetric discharge per unit 

area), it is obtained from Q as follows: 

52x= 
-16 000 

VB= w 2,&~~100~ = - 509.296 ft/d 

Computed values of 47rTs/Q versus l/u for the radial distances of 250, 
500, and 1,000 feet are compared with the type curve of the Theis solution 
in figure 19. The numerical results show good agreement with the analytical 
solution and are nearly the same as obtained by Wilson and others (1979, 
p. 87) in Cartesian coordinates. 
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HANTUSH SOLUTIOiV OF UNSTEADY RADIAL FLOW TO A PUMPED WELL 
IN A LEAKY AQUIFER 

The effects of release of water stored in an elastic confining layer 
(transient leakage) in the vicinity of a well pumped at a constant rate in a 
confined, homogeneous, isotropic aquifer of infinite area1 extent are 
contained in an analytical solution by Hantush (1960) (figure 20). The 
analytical solution for drawdown in this flow system is stated as (see 
Hantush, 1960, figure 5) A 

s = $ H(u,B’), 

where H(u,/~') is an infinite integral that equals the well function W(u) 
when /3' = 0, and 

lr S' 
S'=,, s , F 

where S’ is the storage coefficient (S'sb') of the confining unit and B is 

Jm [length]. 

The flow problem could be conceptualized with axisymmetric cylindrical 
coordinates, as in the first simulation. However, in order to test the 
transient-leakage algorithm, the flow system is represented by Cartesian 
coordinates. Radial symmetry is used to reduce the size of the flow domain 
by simulating a 22.5-degree wedge of the total flow system (see figure 21). 

The finite-element mesh used in this simulation consists of 86 
triangular elements and 67 nodes (figure 21) and extends 32,000 feet from 
the pumped well, which is placed at node 1. Node spacing increases radially 

Confining unit 

Confined aquifer 

+Q = volumetric discharge 

- 

r Initial potentiometric surface 

Impermeable base 

A 

K' = hydraulic 
conductivi~ b’=thickness 

T = transmissivity 

S = storage coefficient 

Figure 20. Geometry used to simulate the effects of transient leakage on 
drawdown near a pumped well. 
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Figure 21. Finite-element mesh used to simulate the effects of transient 
leakage on drawdown near a pumped well. 

from the pumped well by the factor n starting at 50 feet (figure 21). 
The (x,y) coordinates of nodes that are offset from the x axis by 11.25 
degrees (figure 21) are computed from the x coordinate of the nodes located 
on the x axis as (x cos 8, x sin e), where 8 = k11.25 degrees. 

Hydraulic heads are specified at nodes 65, 66, and 67 along the 
external model boundary that is 32,000 feet from the pumped well. This 
boundary is beyond the radius of influence of the pumped well during the 
simulation period. Because the flow system exhibits radial symmetry, 
element sides that are oriented in the radial direction from the well 
represent flow lines; hence, there is no f:Low across these element sides. 
Other characteristics of the problem are 

T = lo5 ft*/d, 
-4 S = 1.25 x 10 , 

Q = 1,256,637 ft3/d, 
h(x,y,O) = 0 ft, 

h(r = 32,000 ft,t) = 0 ft 

for the aquifer and 

K' = 10 ft/d, 

b' = 400 ft, ' 

S' = 0.008 
for the confining unit. The head above the confining unit is held constant 
at 0 feet for the simulation period. 
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Pumpage is simulated for 0.10417 day (about 15 minutes) using 87 time 
elements. An initial time-element size of 2 x 10 -8 day was selected, and 
the other time-element sizes were generated by multiplying previous values 
by factors ranging from 1.0 to 1.5. 

Computed values of 4nTs/Q versus l/u at distances of 100, 300, 500, and 
2,000 feet from the pumped well are compared with the type curves H(u,j3') 
versus l/u using /3' values of 0.1, 0.3, 0.5, and 2, respectively, in figure 
22. The Theis solution plotted on this figure indicates the extent to which 
transient leakage affects drawdown. The numerical results show good 
agreement with the analytical solution. 

MOENCH AND PRICKE’I-I’ SOLUTION FOR CONVERSION FROM CONFINED TO 
UNCONFINED FLOW NEAR A PUMPED WELL 

An analytical solution of Moench and Prickett (1972) is used to test 
the accuracy of MODFE for the problem of drawdown in an aquifer that 
converts from confined to unconfined conditions. A fully penetrating well 
of negligible diameter placed in a nonleaky, confined, homogeneous, and 
isotropic aquifer that is infinite in area1 extent pumps at a constant rate 
Q sufficient to partially dewater the aquifer near the well (figure 23). 
Ground-water flow is assumed to be horizontal and obeys the Dupuit 
assumptions (Bear, 1979, p. 74-78) in the unconfined part of the aquifer. 
Changes in aquifer thickness, b, with drawdown in the unconfined part of the 
aquifer are assumed to be small and do not cause significant changes in 
transmissivity. 

IO' I I 111111~ I I 111111~ I I I Illll~ 

Theis solution 

Hantush solution 
- - - - pl=O.l (r=lOO feet) 
- . . P'=0.3(r=300 feet) 

I” 

10-l 1 o0 IO’ IO2 lo3 lo4 
DIMENSIONLESS TIME, l/u 

Figure 22. Hantush (1960) solution and finite-element results for the 
effects of transient leakage on drawdown near a pumped well. 
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j bland surt~ KQ=volumetric discharge 

-/ 
Initial potentiometric surface 

Potentiometric 

I!I=initial elevation of 
potentiometric 
surface b=thickness 

I 

IMPERMEABLE BASE 

Figure 23. Geometry used to simulate the (effects of conversion from 
confined to unconfined flow near a pumped well. 

Solutions for total drawdown in the unconfined part of the aquifer, sl, 
and in the confined part, s2, are given by 

'1 - 47rT “[ WUl’V) + 47rT(H-b) 
I Q ' 

and 

where 
r2Sy 

u1 = 4Tt ' 

r2S 
u2 = - 4Tt ' 

Sy is the specific yield, S is the storage coefficient, al/o2 [0] is the 

aquifer-diffusivity ratio (T/Sy)/(T/S), or S/Sy, and R is the radial 

distance from the pumped well to where conversion takes place. W(u2) is the 

well function used for the Theis solution and W(ul,v) = W(ul)-W(v). 

The aquifer problem is simulated using Cartesian coordinates, and the 
finite-element mesh is the same as used by Wilson and others (1979, 
p. 95-101) for a similar test problem, except that their mesh terminated at 
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r = 8,000 feet whereas the mesh used here extends to r = 32,000 feet. The 
22.5-degree wedge of the aquifer region is subdivided into 68 triangular 
elements and 52 nodes (figure 24) such that the node spacing expands in the 

radial direction by a factor of ,/-?- starting at 125 feet from the well. 

Time elements range in size from the initial value of 5 X 10 -5 days to a 
final value of 30 days and are expanded by factors of 1.0 for the first four 
elements to approximately 1.5 afterward; 44 time elements were used. Other 
characteristics of the problem are 

K = 26.73 ft/d, 

b = 100 ft, 

sy = 0.1, 

s = 0.0001, 

Q = 33,591 ft3/d, 

h(x,y,O) = 0 ft, 

H = 0 ft. 
A Cauchy-type boundary is placed along the element sides at 32,000 

feet. Because the influence of the pumped well on the aquifer extends 
beyond this radial distance and the analytical solution assumes that the 
aquifer has an infinite area1 extent, the Cauchy-type boundary is used to 
simulate the part of the aquifer that is influenced by the pumped well but 
is not represented by the finite-element mesh. It allows flow across the 
artificial model boundary from the aquifer region that is external to the 
mesh, and allows drawdowns to be computed at the model boundary. 

Figure 24. Finite-element mesh used to simulate the effects of conversion 
from confined to unconfined flow near a pumped well. 
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10-2 22 
10-l loo IO’ IO’ lo3 10” 

DIMENSIONLESS TIME, l/u2 

Figure 25. Moench and Prickett (1972) solution and finite-element results 
for conversion from confined to unconfined flow near a pumped well. 

The specified head HB (equation (4)) for the Cauchy-type boundary was 

located 20d,OOO feet from the pumped well. It is assumed that all drawdown 
in the infinite aquifer occurs within this distance. The coefficient a was 
obtained by assuming that flow beyond 32,000 feet is governed by the steady- 

state flow equation with known-head boundary conditions of h(t) at 
r = 32,000 feet and H B = 0 at r = 200,000 feet. Therefore, by using the 
appropriate solution to the steady-state flow equation (Bear, 1979, p. 306, 
equation (8-7)) and equation (4), 

f's ‘\ 

qn 
=Tah 

I 

T h - HBj 

t 

1 

ar r = 32,000 = ln-32.000] 32,000 
ilOO, 000 

c “1 

so that, because T = 2,673 ft2/d, a = 0.04558 ft/d. 

Computed drawdowns at a radial distance of 1,000 feet from the pumped 
well were compared with the analytical solution. Values of dimensionless 
drawdown, 4xTs/Q, and dimensionless time, l/'u2, were computed from the 

simulation results and are plotted in figure 25 along with the type curves 

of the analytical solution. Values for ev[(u1/a2)-11W(u2) versus l/u2 were 

plotted for drawdowns less than 2 feet (before conversion), and values of 

[ 
W(ul,v) + 2 1 versus l/u2 were plotted for drawdowns greater than 2 feet 

(after conversion). 
analytical solution, 

The numerical results are in good agreement with the 
and are better than the results of Wilson and others 

(1979, p. 99) because they specified HB = 0 at r = 8,000 feet, which did not 

allow drawdown to propagate beyond 8,000 feet as it should have. 
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W=unit recharge rate 
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H1=water 
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Figure 26. Cross section of steady-state flow through a dam with area1 
recharge. 

STEADY-STATE FLOW THROUGH A DAM WITH AREAL RECHARGE 

A straight dam with vertical faces 50 meters wide and 100 meters long 
maintains a water level of 8 meters on one side and 2 meters on the other 
side (figure 26). The hydraulic conductivity, K, of the earth material in 

the dam is 10 -6 m/s and area1 recharge, W, is applied to the surface of the 

dam at the rate of 4.8 x 10 -8 m/s (figure 27). By making the Dupuit 
assumptions for unconfined flow, the solution for the height, h, of the 
water table in the dam can be obtained as the Dupuit parabola (see Verruijt, 
1970, p. 51-57). 

h2 = Hf - H12 - H22 "L + $(L - x), 
1 

where x is the horizontal distance along the width L of the dam and the 
water levels H 1 and H 2 on either side of the dam are 

Hl = 8 meters, x = 0 meters, 

H2 = 2 meters, x = L = 50 meters. 

J 0 10 20 30 40 50 

DISTANCE ALONG WIDTH, IN METERS 

Figure 27. Finite-element mesh used to simulate steady-state flow 
through a dam with area1 recharge. 
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Because ground-water flow is virtually one-dimensional through the dam, 
the entire loo-meter length need not be simulated. Instead, a lo-meter-long 
section of the dam is represented by a finite-element mesh consisting of 60 
triangular elements and 43 nodes (figure 27). No-flow boundaries are placed 
along the element sides that are parallel to the x axis at y = 0 meters and 
y = 10 meters, because ground-water flow is parallel to these boundaries. 
Specified-head boundaries are located along the lines x = 0 meters and x = 
50 meters in order to maintain the height of the water levels at the values 
given for Hl and H2, respectively. Areally distributed recharge is applied 

over the entire model area. 

The steady-state solution for the water-table height provided by MODFE 
is plotted along with the analytical solution in figure 28. The solution by 
MODFE is in close agreement with the analytical solution. 

l- 

,’ 3 

I I I I 

0 10 20 30 40 50 
DISTANCE ALONG x AXIS, IN METERS 

Figure 28. Analytical solution (Dupuit parabola) and finite-element 
results for steady-state flow through a dam with area1 recharge. 
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h=HB=specified head 

+I 40 meters k +I 40 meters k 

Figure 29. Geometry for two-dimensional steady-state flow in an unconfined 
aquifer. 

‘IWO-DIMENSIONAL STEADY-STATE IruIW IN AN UNCONFINED AQUIFER 

The flow problems described previously for testing the accuracy of 
MODFE have one-dimensional solutions, even though MODFE solved these 
problems in two dimensions. This flow problem tests the ability of MODFE to 
accurately compute steady-state water levels in an unconfined aquifer for a 
problem that has an analytical solution in two dimensions. 

The problem used in this simulation is taken from Verruijt (1970, 
Problem 6.2) where four wells pumped at the same rate (1.196 x 10m6 m3/s> 
are located at the corners of a 40-meter square in an unconfined aquifer 
(figure 29). The square represents a construction site where the water 
level is to be maintained 4 meters below the original water table, which is 
10 meters above the impermeable base. The aquifer is homogeneous and 
isotropic with a hydraulic conductivity, K, of 10 -7 

m/s, an initial 
thickness of 10 meters, and an external radius, R, of 2,000 meters, measured 
from the center of the square. Beyond R the drawdown is zero. 

The solution for the aquifer head, h, is given by Verruijt (1970, 
p. 66) as % 

4 (x - x.) 2 
+ (Y 

C Q.ln 
j=l J R 1 

where HB is the specified head (10 meters) at the radius R and Q. is the 
volumetric discharge from well j located at the point 
aquifer. 

(xj,yj) injthe 
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Because the wells are pumped at the same rate and are regularly spaced 
about the center of the square (see figure 29), the flow problem can be 
simulated in the 45-degree wedge shown in figure 30. The origin of the 
wedge is the center of the square, and one of the four pumped wells is 
placed at the point (20 meters, 20 meters) in the wedge. No-flow boundaries 
are located along the x axis and the line y = x, and a specified-head 
boundary (HB = 10 meters) is located at a distance of 2,000 meters from the 

center of the square. 

The aquifer region is subdivided by a,finite-element mesh consisting of 
94 triangular elements and 67 nodes (figure 30). Results from the nonlinear 
steady-state simulation and the analytical solution are presented in figure 
31. The simulated results show good agreement with the analytical solution. 

10 15 20 25 30 

80 

,/-CO60 500 1,000 1,500 2,000 

-0 40 80 120 160 

DISTANCE ALONG x. AXIS, IN METERS 

Figure 30. Finite-element mesh used to simulate two-dimensional 
steady-state flow in an unconfined aquifer. 
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31. Analytical solution and finite-element results for 
two-dimensional steady-state flow in an unconfined aquifer. 

SUMMARY 

The two-dimensional steady- and unsteady-state equations for ground- 
water flow in a heterogeneous, anisotropic aquifer were approximately solved 
with finite-element techniques. Spatial finite elements are triangular with 
two-dimensional linear basis functions and time elements are linear, with 
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one-dimensional linear basis functions. Finite-element equations were 
derived by minimizing a functional of the difference between true and 
approximate hydraulic heads and are equivalent to finite-element equations 
obtained by either classical variational or Galerkin methods. Variable 
directions of anisotropy are incorporated by rotating the coordinate system 
locally so that the rotated coordinates 'are aligned with the local principal 
directions of the transmissivity tensor. For unsteady-state problems, a 
mass balance is computed at the end of each time element. Computed flow 
components include accumulation or depletion of water in storage, flow 
across confining beds, flow across specified-head boundaries, flow across 
specified-flow boundaries, and flow across 'head-dependent flow boundaries. 
For steady-state problems, the mass-balance, excluding the storage 
component, is computed at the end of the simulation. 

The basic finite-element equations include the following processes: 
confined flow; leakage through rigid confining beds; specified area1 and 
point recharge and discharge; and specified-flow, specified-head, or head- 
dependent boundary conditions. Extensions of these equations allow for 
unconfined flow using the Dupuit assumption, decreases of aquifer thickness 
to zero and increases from zero (termed drying of nodes), conversions from 
confined to unconfined flow and vice versa, point head-dependent discharge 
from springs and drainage wells, area1 head-dependent leakage combined with 
aquifer dewatering, area1 head-dependent discharge from evapotranspiration, 
line head-dependent leakage combined with aquifer dewatering for narrow 
rivers, and transient leakage from confining beds. Except for transient 
leakage, all of these extensions are nonlinear. 

The finite-element equations were also formulated using axisymmetric 
cylindrical coordinates to allow analysis of problems involving axisymmetric 
flow in multiaquifer systems. Boundary conditions are the same as for the 
two-dimensional Cartesian versions, but for radial flow the principal 
directions of the hydraulic conductivity tensor are assumed to be the radial 
and vertical directions. None of the extensions can be used in this case. 

Matrix solution techniques for the finite-element equations include the 
direct symmetric-Doolittle method, which can be efficient for small to 
medium problems (less than about 500 nodes), and the iterative modified 
incomplete-Cholesky conjugate-gradient (MICCG) method, which is more 
efficient for larger problems (more than about 500 nodes). Nonlinear 
unsteady-state problems are solved using a predictor-corrector method that 
can employ either the direct or MICCG method to solve both the predictor and 
corrector equations. Nonlinear steady-state problems are solved using an 
iterative method that can also employ either matrix solution method. Use of 
MICCG for nonlinear steady-state problems yields an inner MICCG iteration 
loop and an outer iteration loop on the nonlinearity. Because the inner 
loop converges in progressively fewer iterations as the outer loop 
converges, MICCG is recommended for these problems. 

The accuracy of the finite-element solution method was evaluated using 
five test problems for which analytical solutions are available: radial 
flow to a well in a homogeneous, infinite, nonleaky, confined aquifer; 
radial flow to a well in a homogeneous, infinite, confined aquifer with 
transient leakage; radial flow to a well in a homogeneous, infinite, 
nonleaky aquifer undergoing conversion from confined to unconfined flow; 
one-dimensional, unconfined, steady-state flow through a dam with area1 
recharge; and two-dimensional, unconfined, steady-state flow to a group of 
drainage wells. All problems except the first were solved using Cartesian 
coordinates. All numerical solutions are in good agreement with the 
analytical solutions. 
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APPENDIX A 

It is shown here that 

ah Sat - R(H - h) - W - T &+T ah 
XX ax 1 XY w 

To simplify notation, the generalized Darcy's law (Bear, 1979, p. 71) is 
used to replace the terms involving transmissivity. That is, 

and 
qx= -TxxE - Txy$ 

Qy = -T vh 
YX ax 

-T vh 
4~ ay 

are used to write equation (Al) as 

1 

aN; aN'i 
- R(H - h) - W - P - axqx - -Iq 1 aY Y 

dxdy 

= 0. (A4) 

(A21 

(A3) 

To initiate the proof, equations (A2) and (A3) are substituted into 

equation (l), which is then multiplied by CT n+lNi and integrated over spatial 

element e and time element n+l to obtain 

W) 

Next, a result from vector calculus known as Green's first identity 
(Spiegel, 1959, p. 107) is used to modify the right side of equation (A5). 
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If qx, q 
Y 

, and N; 

e, then 

are continuous and have continuous derivatives in element 

$]dxdy = - 1 /[gqx + $qjdxdy - /CON;qndC, (A6) 

be 

where qn is the component of the flow vector 
Px' qY1 

that is normal to the 

element boundary and is positive for inflow, and Ce is the boundary of 
element e. Substitution of equation (A6) into equation (A5) and 
rearrangement yields 

~'cJ+~[/ I[";[.% - R(H - h) - W - F'] - gq, - sqddxdy 

Ae 

-1 I 

N;qndC dt' = 0. (A71 
Ce 

The integral over the element boundary Ce can be split into two 
integrals: the integral over a Cauchy-type boundary and the integral over 
the remaining side(s), so that 

/CeN;qndC = i,$qr,dC + lc;"'[qB + a(HR - h)]dC, (AS) 

where Cy designates the side(s) that are not Cauchy-type boundaries and 

equation (4) was used to replace q, in the integral over a Cauchy-type 
boundary. 

When equation (A7) is summed over all elements in the patch for node i, 

all boundary integrals over Cy for adjacent element sides cancel because of 

equation (3) and the continuity of Nz across an element boundary. Further- 

more, all boundary integrals for element sides forming the outer boundary of 

the patch are zero, because NF is zero on these sides. Therefore, equation 
(A7) yields 

R(H - h) 

+aHR- 
c 

-W-P - 
1 

h 

aNf! 
Aq - 
ax x 

aN: 
Lq dxdy 1 JY Y 

(A91 

which, when written using equations (A2) and (A3) to replace qx and q , is 
equation (Al). Y 
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NOTATION 

The principal notation used in this report is given below. Certain symbols 
used only locally are omitted from the list for brevity. 

Ae,Be,Ce Coefficients defined by equation (6) and used to compute the . 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

B 

A;,B; 

Am'Bm 

(ai ,bJ > 

ay,bF,cy 

A = 

b 

b' 

G 
C ai 

C ei 

C 
pi 

C ri 
e 

C ii 

c(1) ,p 
ii ii 

C = 
D ij 

D = 

h 
approximate solution, h. 
Coefficients defined by equati'ons (176) and (177) and used to 
approximate the infinite serie,s for transient leakage calculations. 

Am = AA/o,; Bm = B;/p,. 

(x,y) location of the jth point source or sink. 
that the location is given in (x,9) coordinates. 

Overbars signify 

Coefficients used in basis functions NT; defined by equation (10) 

for Cartesian coordinates and by equation (212) for axisymmetric 
cylindrical coordinates. Overbars signify evaluation using (X,9) 
coordinates. 
Matrix G + z or the coefficient matrix defined by equation (254), 
dependi;g on context. Entries are A.. 

1J 
for 9 = g + V-and a.. for 4 = 1J 

as the coefficient matrix. Subscript R (L,) signifies evaluation 

of the coefficient matrix at iteration R for a nonlinear steady- 
state problem. 
Vector of known flows and boundary conditions, defined by equations 
(45) and (50) for Cartesian coordinates and by equations (45) and 
(229) for axisymmetric cylindrical coordinates. Entries are Bi. 
Subscript R (BR) signifies evaluation at iteration R for a 

nonlinear steady-state problem. 
Weighted average B over time element n+l defined by equation (62). 
Entries are Bi. - 

Aquifer thickness; bi is aquifer thickness at node i, and bi n is , 
aquifer thickness at node i and time level n. 
Confining-unit thickness; b; is harmonic mean confining-unit 

thickness at node i defined by equation (170). 
Side(s) of element e that are Cauchy-type boundaries. 

Coefficient for area1 head-dependent leakage function that applies 
for aquifer dewatering at node i; defined by equation (119). 
Coefficient for area1 head-dependent discharge function at node i; 
defined by equation (132). 
Coefficient for point head-dependent discharge function at node i; 
defined by equation (104). 
Coefficient for line head-dependent leakage function at node i; 
defined by equation (155). 
Storage coefficient term for node i of element e; defined by 
equation (36) for Cartesian coordinates and by equation (224) for 
axisymmetric cylindrical coordinates. 
Entry Cii = of C for before (1) and after (2) conversion from 

confined to unconfined flow or vice versa. 
Diagonal matrix with diagonal entries defined by Cii = z 

i 
cTi. 

g de.. 
i 1J 

Diagonal matrix for symmetric-Doolittle factorization of &; defined 
by equation (260). Entries are l/crii. 
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P 

de. 
iJ 

d 

h 
e 
e. 

f1 ij 
G = 

g 

(‘: = 
-* 
G = 
-* 
G = 

e 
gij 

h 
"* 
h 

h 
-0 

16) 

I mi,n 

; mi,n 

l Diagonal matrix for incomplete-Cholesky or modified incomplete- 
Cholesky factorization of A; defined by equation (272) and 
calculated using equation (273) for incomplete-Cholesky 
factorization or equation (272) for modified incomplete-Cholesky 
factorization. Entries are l/aii. 

l Hydraulic-conductivity term for unconfined flow; defined by 
equation (72). 

l Right-hand side vector for finite-element matrix equation (254). 
Entries are di. 

l Error h - i in the approximate solution of equation (1). 
l Index indicating summation over elements in the patch for node i. 

l Element of fill-in in E; defined by equation (277). 

l Matrix defined by entries G.. - X ge. for confined flow and by 
iJ ei 'J 

equation (74) for unconfined flow. 
l Weighted average g over time element n+l defined by equation (69). 

l Weighted average g over time element n+l defined by equation (70). 

l Matrix E computed using predicted head vector 2. 

l Matrix c computed using predicted head vector 2. 

l Transmissivity term defined by equations (38) (or (43)), (39), and 
(40) for Cartesian coordinates and by equations (226), (227), and 
(228) for axisymmetric cylindrical coordinates. 

l Hydraulic head at the distal side of a confining unit. 
l Specified head at a boundary. 

l Initial head (at t = 0). 

l Hydraulic head at the distal side of a confining unit or the stage 
elevation of wide river overlying an aquifer being dewatered. 

l Controlling head for line head-dependent leakage functions (for 
rivers it is the river-stage elevation). 

l True hydraulic head in the aquifer. 

l Approximate hydraulic head in the aquifer defined by equation (6); 

ii is f; at node i and ii n is i at node i and time level n. 

l Predicted head at node i'during a conversion from confined to 
unconfined flow. 

l Vector of entries ;li; 5, is a vector of entries ;li n. 
, 

l Weighted mean of i over time element n+l; defined by equation (63). 

l Predicted head vector for time level n+l for predictor-corrector 
method. 

l Arbitrary initial head vector for steady-state flow problems. 

l Error functional defined by equation (15) for Cartesian coordinates 
and by equation (214) for axisymmetric cylindrical coordinates. 

l The mth term of the infinite series for transient leakage at time 
level n resulting from time variation of head in the aquifer at 
node i; defined by equation (172). 

l The mth term of the finite series to approximate transient leakage 
at time level n resulting from time variation of head in the 
aquifer at node i; defined by equation (179). 
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<Lj> 
J mi,n 

; mi,n 

K K xx' xy' 

K K 
YXj YY 

I K KZz rr' 3 

K$z 

L ij ' 

M = 

N 

N1' N2 

NY 

N = 

P 

Qj 
Q ai 

Q ei 
Q Pi 
Q ri 

qB 

qn 

R 

(r,z) 

5 
S 

l Row and column location of nonzero entries in A. 

l The mth term of the infinite series for transient leakage at time 
level n resulting from time variation of head at the distal side of 
a confining unit at node i; defined by equation (175). 

l The mth term of the finite series to approximate transient leakage 
at time level n resulting from time variation of head at the distal 
side of the confining unit at node i; defined by equation (181). 

l Components of the hydraulic conductivity tensor for the 

aquifer written using Cartesian coordinates (x,y). Principal 

components in the (%,y) coordinate system are 
t 
KG%, K-- 

1 
. 

YY 
l Principal components of the hydraulic conductivity tensor written 

using axisymmetric cylindrical coordinates (r,z). 
l Vertical hydraulic conductivity in a confining unit; Kkz is the 

constant value of K' zz for spatial element e. 

l Length of the side of an element between nodes i and j'. 

l Finite series approximation of S 1I"'D) for transient leakage. 

l Finite series approximation of S2 AtD for transient leakage. 
I I 

l Preconditioning matrix that is an approximation of 9 but is much 
easier to invert; defined by equation (266). 

. Number of nodes in the finite-element mesh, or the number of 
unknowns in equation (254), depending on context. 

l Number of terms in Ml AtD and M2 AtD , respectively. 
c 3 c 1 

l Basis functions for spatial finite elements defined by equation (9) 
for Cartesian coordinates and equation (211) for axisymmetric 
cylindrical coordinates. Overbar signifies evaluation using (x,9) 
coordinates. 

l Matrix A-M. a= 

l jilh b-a!) 6 [Y-bj)Qj (t> 8 which is the designation of p sources or 

sinks, each of strength Q., 
J 

defined for equation (1). 

l Volumetric flow rate for point source or sink j; defined for 
equation (1). 

l Volumetric flow rate at node i from leakage through a confining 
unit or river overlying an aquifer being dewatered. 

l Volumetric flow rate at node i from area1 head-dependent discharge. 

l Volumetric flow rate at node i from point head-dependent discharge. 

l Volumetric flow rate at node i from line head-dependent discharge. 

l Specified flow (specific discharge times aquifer thickness) normal 
to a boundary. 

l Normal component of flow (specific discharge times aquifer 
thickness) at a boundary. 

l Hydraulic conductance of a confining unit; Re is the constant value 
of R for spatial element e. 

l Radial and vertical coordinates of the axisymmetric cylindrical 
coordinate system. 

l Residual vector Ba 
at iteration 1. 

- $ia for the finite-element matrix equations 

l Storage coefficient of the aquifer; Se is the constant value of S 
for spatial element e. 
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S . 
S 

5 
. 

S . 
Y 

“11”‘D) l 

%pD) l 

sk 
. 

T T l 

xx’ xy’ 

T T 
YX’ YY 

t t’ 
u= 

v = 

VB 
V n 

e 
V. ii 

W 

(X,Y> 
<a 
X 

z 

=b 
Z e 

zP 

Z r 

Zt 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Specific storage; 
element e. 

Sz is the constant value of Ss for spatial 

Specific storage of a confining unit; SLe is the constant value of 
Sg for spatial element e. 

Specific yield; 
element e. 

S; is the constant value of Sy for spatial 

Infinite series for transient leakage; defined by equation (186). 

Infinite series for transient leakage; defined by equation (187). 

Displacement vector xk+l - xk for the iterative GCGM method. 

Components of the transmissivity tensor for the aquifer 

written using Cartesian coordinates (x,y). Principal components in 

the (G,?) coordinate system are 
t 
Txx, T-- 

1 
. 

YY 
Time. 
Time since time-level n, t - tn. 

Upper triangular matrix for symmetric-Doolittle factorization of 9; 
defined by equation (259). Entries are u.., i < j, and oii. 

iJ 
Upper triangular matrix for incomplete-Cholesky or modified 
incomplete-Cholesky factorization of 4; defined by equation (272). 

Nonzero entries are u.. 
13 ' 

i < j, and aii. 

Diagonal matrix defined by entries Vii = F vyi. 
i 

Specified specific discharge normal to a boundary. 

Normal component of specific discharge at a boundary. 

Hydraulic conductance and Cauchy-type boundary condition term 
defined by equation (37) for Cartesian coordinates and by equation 
(225) for axisymmetric cylindrical coordinates. 
Unit area1 recharge or discharge rate for the aquifer; We is the 
value of W for spatial element e. 
Global Cartesian coordinates. 

Local, rotated Cartesian coordinates along the principal directions 
of the transmissivity tensor. 
Solution vector for the finite-element matrix equation (254). 

Intermediate vector for the symmetric-Doolittle factorization 
solution of equation (254) or equation (269). 
Vertical coordinate direction, positive upward. 
Elevation of the aquifer base; zbi is zb at node i. 

Elevation below which the area1 head-dependent discharge function 
vanishes; z ei is z at node i. e 
Elevation below which the point head-dependent discharge function 
vanishes; z 

pi 
is z at node i. 

P 
Elevation at which discharge to the aquifer from a line head- 
dependent source or sink is at a maximum; zri is zr at node i. 

Elevation of the top of the aquifer (base of the confining unit); 

'ti is z t at node i. 
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Greek 

a 

Q' 

a.. 11 

a. ii 

am9@m 

'i 

he 

At 

At; 

6 

6* 

6 -0 

E 

E s 

Be 

*i 

ii 

u n' u n+l 

'i 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Parameter for Cauchy-type boundary conditions in Cartesian 
coordinates; defined by equation (4). 
Parameter for Cauchy-type boundary conditions in axisymmetric 
cylindrical coordinates; defined by equation (209). 

-1 Entry of matrix $j . 

Entry of matrix i-l. 

Exponents defined by equations (176) and (177) used to approximate 
the infinite series for transient leakage calculations. 
Transient leakage parameter for node i; defined by equation (167). 

Area of element e; defined by equation (11) for Cartesian 
coordinates and by equation (213) for axisymmetric cylindrical 
coordinates. 
Time interval tn - tn 1 for time element n. 

Dimensionless time interval Tiht,. 

Head change vector - i 
.I 

over time interval $Atn+l for -n h h 
unsteady-state problems; ca is head change hl+l - ha from iteration 

1 to iteration a+1 for nonline<ar, steady-state problems. 

Predicted head change vector over time interval !$Atn+l for 

predictor step of the predictor-corrector method. 

Head change vector h 
problems. 

- ho computed for linear steady-state 

Convergence criterion for the MICCG method; defined for equation 
(285). 
Convergence criterion for the iterative solution of nonlinear 
steady-state flow problems; defined for equation (240). 

Counter-clockwise rotation angle from (x,y) coordinates to (x,7) 
coordinates in element e. 
Proportionate point in time element n+l when node i converts from 
confined to unconfined flow or vice versa. 

The estimate of Bi given by equation (96). 

Basis functions for 

Proportionate point 
discharge function, 
line head-dependent 

+i[di ] + 1 /2: 

Proportionate point 
dependent discharge 
equation (134). 

Proportionate point 
dependent discharge 
equation (133). 

time elements; defined by equation (13). 

in time element n+l when a point head-dependent 
an area1 head-dependent leakage function, or 
leakage function changes form at node i. 

in time element n+l when an area1 head- 
function changes form at node i; defined by 

in time element n+l when an area1 head- 
function changes form at node i; defined by 
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